LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - PHYSICS

THIRD SEMESTER - NOVEMBER 2018
MT 3102 - MATHEMATICS FOR PHYSICS

Dept. No. \square
Date: 03-11-2018

Section A

Answer ALL questions:
$10 \times 2=20$

1. If $y=\sin (a x+b)$, find y_{n}.
2. Find the length of the subtangent for the parabola $y^{2}=4 a x$.
3. If $A=\left(\begin{array}{cc}2 & 4 \\ 6 & 12\end{array}\right)$. Find the rank of A.
4. Sum to infinity of the series $1+\frac{\log 2}{1!}+\frac{(\log 2)^{2}}{2!}+$
5. Find the Laplace transform of $a t^{2}+b t+c$.
6. Find $L^{-1}\left(\frac{s}{s^{2}-a^{2}}\right)$.
7. Write down the power series expansion for $\sin \theta$ and $\cos \theta$.
8. Prove that $\sin i x=i \sinh x$.
9. Two dice are thrown. What is the probability that the sum of the numbers is greater than 8 ?
10. If a Poisson variate X is such that $P(X=1)=2 P(X=2)$, find the mean.

Section B

Answer any FIVE questions:
$5 \times 8=40$
11. Find the maximum value of $\frac{\log x}{x}$ for positive values of x.
12. Find the angle of intersection of the cardioids $r=a(1+\cos \theta)$ and $r=b(1-\cos \theta)$.
13. Find the sum of the series $1-\frac{3}{1!}\left(\frac{1}{4}\right)+\frac{3.6}{2!}\left(\frac{1}{4}\right)^{2}-\frac{3.6 \cdot 9}{3!}\left(\frac{1}{4}\right)^{3}+\cdots \infty$.
14. Verify Cayley Hamilton theorem for the matrix $\left(\begin{array}{ccc}1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1\end{array}\right)$.
15. Find $L\{f(t)\}$ where $f(t)=\left\{\begin{array}{cc}e^{-t} & \text { when } 0<t<4 \\ 0 & \text { when } t>4\end{array}\right.$.
16. Express $\cos ^{5} \theta$ in a series of cosines of multiplies of θ.
17. If $\cos (x+i y)=\cos \theta+i \sin \theta$, then show that $\cos 2 x+\cosh 2 y=2$.
18. A car hire firm has two cars, which it hires out day by day. The number of demands for a car on each day is distributed as a Poisson distribution with mean 1.5. Calculate the proportion of days on which (i) neither car is used, (ii) the proportion of days on which some demand is refused.

Section C

Answer any TWO questions:
19. a) If $y=\sin \left(m \sin ^{-1} x\right)$, prove that $\left(1-x^{2}\right) y_{2}-x y_{1}+m^{2} y=0$ and
$\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}+\left(m^{2}-n^{2}\right) y_{n}=0$.
(b) If a, b, c are three consecutive positive integers, show that

$$
\begin{equation*}
\log b=\frac{1}{2} \log a+\frac{1}{2} \log c+\frac{1}{2 a c+1}+\frac{1}{(2 a c+1)^{2}}+\cdots \infty . \tag{15+5}
\end{equation*}
$$

20.a) Find the eigen values and eigen vectors of the matrix $A=\left(\begin{array}{lll}3 & -4 & 4 \\ 1 & -2 & 4 \\ 1 & -1 & 3\end{array}\right)$
b) Evaluate $L\left(t^{2} e^{-3 t}\right)$.
21. Solve the equation $\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}-3 y=\sin t$ given that $y=\frac{d y}{d t}=0$ when $t=0$.
22. a) Expand $\frac{\sin 6 \theta}{\sin \theta}$ in powers of $\cos \theta$.
b) Calculate the mean and standard deviation for the following data giving the age distribution of 542 members.

Age (in years)	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$	$80-90$
No. of members	3	61	132	153	140	51	2
$(5+15)$							

